Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gut Microbes ; 16(1): 2327409, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38488630

RESUMO

The gut microbiota exerts a mutualistic interaction with the host in a fragile ecosystem and the host intestinal, neural, and immune cells. Perturbations of the gastrointestinal track composition after stress have profound consequences on the central nervous system and the immune system. Reciprocally, brain signals after stress affect the gut microbiota highlighting the bidirectional communication between the brain and the gut. Here, we focus on the potential role of inflammation in mediating stress-induced gut-brain changes and discuss the impact of several immune cells and inflammatory molecules of the gut-brain dialogue after stress. Understanding the impact of microbial changes on the immune system after stress might provide new avenues for therapy.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/fisiologia , Encéfalo/fisiologia , Sistema Nervoso , Inflamação
2.
Pharmacol Biochem Behav ; 227-228: 173561, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37148918

RESUMO

Psychiatric disorders are mental illnesses involving changes in mood, cognition and behavior. Their prevalence has rapidly increased in the last decades. One of the most prevalent psychiatric disorders is major depressive disorder (MDD), a debilitating disease lacking efficient treatments. Increasing evidence shows that microbial and immunological changes contribute to the pathophysiology of depression and both are modulated by stress. This bidirectional relationship constitutes the brain-gut axis involving various neuroendocrine, immunological, neuroenterocrine and autonomic pathways. The present review covers the most recent findings on the relationships between stress, the gut microbiome and the inflammatory response and their contribution to depression.


Assuntos
Transtorno Depressivo Maior , Microbioma Gastrointestinal , Humanos , Depressão/metabolismo , Transtorno Depressivo Maior/metabolismo , Microbioma Gastrointestinal/fisiologia , Afeto , Inflamação/metabolismo , Encéfalo/metabolismo
3.
Brain Behav Immun ; 111: 412-423, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37169132

RESUMO

Immune cells and the brain have a privileged interaction. Here, we report changes in the hippocampal immune microenvironment at the single cell level after stress, uncovering the tight orchestration of immune cell infiltration into the hippocampus after stress to maintain homeostasis. We show the distribution of several immune cell types in the hippocampus associated with their susceptibility or resilience to the learned helplessness paradigm in a sex- and microbiota-dependent manner using single-cell RNA sequencing and bioinformatic tools, flow cytometry, and immunofluorescence. We uncovered the presence of tissue-resident memory T cells that accumulate over time in the hippocampus of learned helpless mice, and the presence of CD74-expressing myeloid cells. These cells were found by a knockdown approach to be critical to induce resilience to learned helplessness. Altogether, these findings provide a novel overview of the neuro-immune repertoire and its impact on the landscape of the hippocampus after learned helplessness.


Assuntos
Encéfalo , Hipocampo , Camundongos , Animais , Hipocampo/metabolismo , Desamparo Aprendido , Estresse Psicológico/metabolismo
4.
Microbiome ; 11(1): 92, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37106375

RESUMO

BACKGROUND: Microbiome alterations have been associated with depression, and fecal transfer of depressed patients' microbiomes is sufficient to enhance despair behaviors in rodents. Yet little is known about the potential mechanisms, whereby microbes modulate depressive-like behaviors. RESULTS: In this study, we showed that certain bacteria known to induce Th17 cells are increased in depressed patients and mice exhibiting learned helplessness. Fecal transfers of human depressed patients' microbiomes into germ-free-like mice were sufficient to decrease sociability and increased susceptibility to the learned helplessness paradigm, confirming that the microbiome is sufficient to confer depressive-like behaviors. This microbial effect was dependent on the presence of Th17 cells in the recipient, as germ-free-like recipient mice deficient in Th17 cells were resistant to the behavioral changes induced by the microbiome of depressed patients. CONCLUSION: Altogether, these findings suggest a crucial role of the microbiome/Th17 cell axis in regulating depressive-like behaviors. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Camundongos , Animais , Células Th17 , Microbioma Gastrointestinal/fisiologia , Depressão/microbiologia , Fezes
5.
Neurobiol Dis ; 175: 105926, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36375722

RESUMO

The blood brain barrier (BBB) is a vital structure to protect the brain, tightly filtering the passage of nutrients and molecules from the blood to the brain. This is critical for maintaining the proper functioning of the brain, and any disruption in the BBB has detrimental consequences often leading to diseases. It is not clear whether disruption of the BBB occurs first in depression or is the consequence of the disease, however disruption of the BBB has been observed in depressed patients and evidence points to the role of important culprits in depression, stress and inflammation in disrupting the integrity of the BBB. The mechanisms whereby stress, and inflammation affect the BBB remain to be fully understood. Yet, the role of cytokines in regulating tight junction protein expression seems crucial. Altogether, the findings in depression suggest that acting at the BBB level might provide therapeutic benefit in depression.


Assuntos
Barreira Hematoencefálica , Depressão , Humanos , Barreira Hematoencefálica/metabolismo , Inflamação/metabolismo , Transporte Biológico , Encéfalo/metabolismo
6.
Brain Behav Immun ; 106: 180-197, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36058417

RESUMO

Major depressive disorder (MDD) is a debilitating disease with a high worldwide prevalence. Despite its greater prevalence in women, male animals are used in most preclinical studies of depression even though there are many sex differences in key components of depression, such as stress responses and immune system functions. In the present study, we found that chronic restraint stress-induced depressive-like behaviors are quite similar in male and female mice, with both sexes displaying increased immobility time in the tail suspension test and reduced social interactions, and both sexes exhibited deficits in working and spatial memories. However, in contrast to the similar depressive-like behaviors developed by male and female mice in response to stress, they displayed different patterns of pro-inflammatory cytokine increases in the periphery and the brain, different changes in microglia, and different changes in the expression of Toll-like receptor 4 in response to stress. Treatment with (+)-naloxone, a Toll-like receptor 4 antagonist that previously demonstrated anti-depressant-like effects in male mice, was more efficacious in male than female mice in reducing the deleterious effects of stress, and its effects were not microbiome-mediated. Altogether, these results suggest differential mechanisms to consider in potential sex-specific treatments of depression.


Assuntos
Transtorno Depressivo Maior , Receptor 4 Toll-Like , Animais , Comportamento Animal , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Naloxona/farmacologia , Estresse Psicológico/tratamento farmacológico
7.
Pharmacol Rev ; 74(2): 373-386, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35302045

RESUMO

There is a vital need to understand mechanisms contributing to susceptibility to depression to improve treatments for the 11% of Americans who currently suffer from this debilitating disease. The adaptive immune system, comprising T and B cells, has emerged as a potential contributor to depression, as demonstrated in the context of lymphopenic mice. Overall, patients with depression have reduced circulating T and regulatory B cells, "immunosuppressed" T cells, and alterations in the relative abundance of T cell subtypes. T helper (Th) cells have the capacity to differentiate to various lineages depending on the cytokine environment, antigen stimulation, and costimulation. Regulatory T cells are decreased, and the Th1/Th2 ratio and the Th17 cells are increased in patients with depression. Evidence for changes in each Th lineage has been reported to some extent in patients with depression. However, the evidence is strongest for the association of depression with changes in Th17 cells. Th17 cells produce the inflammatory cytokine interleukin (IL)-17A, and the discovery of Th17 cell involvement in depression evolved from the well established link that IL-6, which is required for Th17 cell differentiation, contributes to the onset, and possibly maintenance, of depression. One intriguing action of Th17 cells is their participation in the gut-brain axis to mediate stress responses. Although the mechanisms of action of Th17 cells in depression remain unclear, neutralization of IL-17A by anti-IL-17A antibodies, blocking stress-induced production, or release of gut Th17 cells represent feasible therapeutic approaches and might provide a new avenue to improve depression symptoms. SIGNIFICANCE STATEMENT: Th17 cells appear as a promising therapeutic target for depression, for which efficacious therapeutic options are limited. The use of neutralizing antibodies targeting Th17 cells has provided encouraging results in depressed patients with comorbid autoimmune diseases.


Assuntos
Depressão , Células Th17 , Animais , Citocinas , Humanos , Camundongos , Linfócitos T Reguladores
8.
Neurobiol Dis ; 165: 105646, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35104645

RESUMO

Postpartum depression (PPD) is the most common psychiatric complication associated with pregnancy and childbirth with debilitating symptoms that negatively impact the quality of life of the mother as well as inflict potentially long-lasting developmental impairments to the child. Much of the theoretical pathophysiology put forth to explain the emergence of PPD overlaps with that of major depressive disorder (MDD) and, although not conventionally described in such terms, can be seen as neurodegenerative in nature. Framing the disorder from the perspective of the well-established inflammatory theory of depression, symptoms are thought to be driven by dysregulation, and subsequent hyperactivation of the body's immune response to stress. Compounded by physiological stressors such as drastic fluctuations in hormone signaling, physical and psychosocial stressors placed upon new mothers lay bare a number of significant vulnerabilities, or points of potential failure, in systems critical for maintaining healthy brain function. The inability to compensate or properly adapt to meet the changing demands placed upon these systems has the potential to damage neurons, hinder neuronal growth and repair, and disrupt neuronal circuit integrity such that essential functional outputs like mood and cognition are altered. The impact of this deterioration in brain function, which includes depressive symptoms, extends to the child who relies on the mother for critical life-sustaining care as well as important cognitive stimulation, accentuating the need for further research.


Assuntos
Depressão Pós-Parto , Transtorno Depressivo Maior , Criança , Depressão/psicologia , Depressão Pós-Parto/diagnóstico , Depressão Pós-Parto/psicologia , Feminino , Humanos , Gravidez , Qualidade de Vida , Fatores de Risco
9.
Chronic Stress (Thousand Oaks) ; 5: 24705470211032208, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34595364

RESUMO

Women are at higher risk for developing posttraumatic stress disorder (PTSD) compared to men, yet little is known about the biological contributors to this sex difference. One possible mechanism is differential immunological and neuroendocrine responses to traumatic stress exposure. In the current prospective study, we aimed to identify whether sex is indirectly associated with the probability of developing nonremitting PTSD through pro-inflammatory markers and whether steroid hormone concentrations influence this effect. Female (n = 179) and male (n = 197) trauma survivors were recruited from an emergency department and completed clinical assessment within 24 h and blood samples within ∼three hours of trauma exposure. Pro-inflammatory cytokines (IL-6, IL-1 ß , TNF, IFNγ), and steroid hormone (estradiol, testosterone, progesterone, cortisol) concentrations were quantified in plasma. Compared to men, women had a higher probability of developing nonremitting PTSD after trauma (p = 0.04), had lower pro-inflammatory cytokines and testosterone (p's<0.001), and had higher cortisol and progesterone (p's<0.001) concentrations. Estradiol concentrations were not different between the sexes (p = 0.24). Pro-inflammatory cytokines were a significant mediator in the relationship between sex and probability of developing nonremitting PTSD (p < 0.05), such that men had higher concentrations of pro-inflammatory cytokines which were associated with lower risk of nonremitting PTSD development. This effect was significantly moderated by estradiol (p < 0.05), as higher estradiol levels in men were associated with higher pro-inflammatory cytokine concentrations and lower risk for developing nonremitting PTSD. The current results suggest that sex differences in the pro-inflammatory cytokine response to trauma exposure partially mediate the probability of developing nonremitting PTSD, and that the protective ability to mount an pro-inflammatory cytokine response in men may depend on higher estradiol levels in the aftermath of trauma exposure.

10.
Br J Pharmacol ; 177(24): 5658-5676, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33080056

RESUMO

BACKGROUND AND PURPOSE: A significant number of HIV-1 patients on antiretroviral therapy develop HIV-associated neurocognitive disorders (HAND). Evidence indicate that biological sex may regulate HAND pathogenesis, but the mechanisms remain unknown. We investigated synaptic mechanisms associated with sex differences in HAND, using the HIV-1-transgenic 26 (Tg26) mouse model. EXPERIMENTAL APPROACH: Contextual- and cue-dependent memories of male and female Tg26 mice and littermate wild type mice were assessed in a fear conditioning paradigm. Hippocampal electrophysiology, immunohistochemistry, western blot, qRT-PCR and ELISA techniques were used to investigate cellular, synaptic and molecular impairments. KEY RESULTS: Cue-dependent memory was unaltered in male and female Tg26 mice, when compared to wild type mice. Male, but not female, Tg26 mice showed deficits in contextual fear memory. Consistently, only male Tg26 mice showed depressed hippocampal basal synaptic transmission and impaired LTP induction in area CA1. These deficits in male Tg26 mice were independent of hippocampal neuronal loss and microglial activation but were associated with increased HIV-1 long terminal repeat mRNA expression, reduced hippocampal synapsin-1 protein, reduced BDNF mRNA and protein, reduced AMPA glutamate receptor (GluA1) phosphorylation levels and increased glycogen synthase kinase 3 (GSK3) activity. Importantly, selective GSK3 inhibition using 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione increased levels of synapsin-1, BDNF and phosphorylated-GluA1 proteins, restored hippocampal basal synaptic transmission and LTP, and improved contextual fear memory in male Tg26 mice. CONCLUSION AND IMPLICATIONS: Sex-dependent impairments in contextual fear memory and synaptic plasticity in Tg26 mice are associated with increased GSK3 activity. This implicates GSK3 inhibition as a potential therapeutic strategy to improve cognition in HIV-1 patients.


Assuntos
HIV-1 , Animais , Medo , Feminino , Quinase 3 da Glicogênio Sintase , Hipocampo , Humanos , Potenciação de Longa Duração , Masculino , Transtornos da Memória/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
11.
J Neuroinflammation ; 17(1): 246, 2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32828124

RESUMO

BACKGROUND: Major depressive disorder is a widespread mood disorder. One of the most debilitating symptoms patients often experience is cognitive impairment. Recent findings suggest that inflammation is associated with depression and impaired cognition. Pro-inflammatory cytokines are elevated in the blood of depressed patients and impair learning and memory processes, suggesting that an anti-inflammatory approach might be beneficial for both depression and cognition. METHODS: We subjected mice to the learned helplessness paradigm and evaluated novel object recognition and spatial memory. Mice were treated with IL-10 intranasally or/and microglia cells were depleted using PLX5622. Statistical differences were tested using ANOVA or t tests. RESULTS: We first established a mouse model of depression in which learning and memory are impaired. We found that learned helplessness (LH) impairs novel object recognition (NOR) and spatial working memory. LH mice also exhibit reduced hippocampal dendritic spine density and increased microglial activation compared to non-shocked (NS) mice or mice that were subjected to the learned helpless paradigm but did not exhibit learned helplessness (non-learned helpless or NLH). These effects are mediated by microglia, as treatment with PLX5622, which depletes microglia, restores learning and memory and hippocampal dendritic spine density in LH mice. However, PLX5622 also impairs learning and memory and reduces hippocampal dendritic spine density in NLH mice, suggesting that microglia in NLH mice produce molecules that promote learning and memory. We found that microglial interleukin (IL)-10 levels are reduced in LH mice, and IL-10 administration is sufficient to restore NOR, spatial working memory, and hippocampal dendritic spine density in LH mice, and in NLH mice treated with PLX5622 consistent with a pro-cognitive role for IL-10. CONCLUSIONS: Altogether these data demonstrate the critical role of IL-10 in promoting learning and memory after learned helplessness.


Assuntos
Transtorno Depressivo Maior/tratamento farmacológico , Desamparo Aprendido , Interleucina-10/uso terapêutico , Aprendizagem/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Memória/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Interleucina-10/farmacologia , Masculino , Camundongos , Resultado do Tratamento
12.
Brain Behav Immun ; 90: 226-234, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32860941

RESUMO

Depression is a leading cause of disability worldwide and current treatments are often inadequate for many patients. Increasing evidence indicates that inflammation contributes to susceptibility to depression. We hypothesized that targeting Toll-like receptor 4 (TLR4), one of the main signaling pathways for triggering an inflammatory response, would lessen stress-induced depression-like behaviors in male mice. TLR4 inhibition with the CNS-penetrating drug (+)-naloxone that is a TLR4 antagonist but is inactive at opiate receptors increased resistance to the learned helplessness model of depression and provided an antidepressant-like effect in the tail suspension test. (+)-Naloxone administration also reversed chronic restraint stress-induced impairments in social behavior and novel object recognition. These effects involved blockade of stress-induced activation of glycogen synthase kinase 3ß (GSK3ß), NF-κB, IFN regulatory factor 3 (IRF3) and nitric oxide production, and reduced levels of the cytokines tumor necrosis factor-α (TNFα) and interferon-ß (IFNß). These findings demonstrate that blocking TLR4 with (+)-naloxone effectively diminishes several detrimental responses to stress and raise the possibility that (+)-naloxone may be a feasible intervention for depression.


Assuntos
Naloxona , Receptor 4 Toll-Like , Animais , Humanos , Masculino , Camundongos , NF-kappa B/metabolismo , Naloxona/farmacologia , Transdução de Sinais , Fator de Necrose Tumoral alfa
13.
Am J Psychiatry ; 177(10): 974-990, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32731813

RESUMO

OBJECTIVE: Microbiota dysbiosis has been linked to major depressive disorder, but the mechanisms whereby the microbiota modulates mood remain poorly understood. The authors tested whether specific changes in the microbiome modulate depressive-like behaviors. METHODS: Stools from learned helpless, non-learned helpless, and non-shocked mice were analyzed by V4 16S RNA sequencing to identify gut bacteria associated with learned helplessness and to quantify the level of the quorum-sensing molecule autoinducer-2 (AI-2). T cells were analyzed by flow cytometry, and serum amyloid proteins (SAA) were analyzed by quantitative real-time polymerase chain reaction. Fecal transfer approach and administration of oleic acid and AI-2 were used to determine the effects of the microbiome and quorum-sensing molecules on depressive-like behaviors. RESULTS: Mice deficient in segmented filamentous bacteria (SFB) were resilient to the induction of depressive-like behavior, and were resensitized when SFB was reintroduced in the gut. SFB produces the quorum-sensing AI-2 and promotes the production of SAA1 and SAA2 by the host, which increases T helper 17 (Th17) cell production. Th17 cells were required to promote depressive-like behaviors by AI-2, as AI-2 administration did not promote susceptibility to depressive-like behaviors or SAA1 and SAA2 production in Th17-deficient mice after stress. Oleic acid, an AI-2 inhibitor, exhibited antidepressant properties, reducing depressive-like behavior, intestinal SAA1 and SAA2 production, and hippocampal Th17 cell accumulation. Stool samples from 10 people with current depressive symptoms and 10 matched healthy control subjects were analyzed as well. Patients with current major depressive disorder exhibited increased fecal interleukin 17A, SAA, and SFB levels. CONCLUSIONS: The study results reveal a novel mechanism by which bacteria alter mood.


Assuntos
Depressão/metabolismo , Microbioma Gastrointestinal/fisiologia , Células Th17/fisiologia , Adulto , Animais , Transtorno Depressivo Maior/metabolismo , Modelos Animais de Doenças , Fezes/química , Feminino , Citometria de Fluxo , Microbioma Gastrointestinal/genética , Desamparo Aprendido , Humanos , Interleucina-17/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Percepção de Quorum , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteína Amiloide A Sérica/análise , Células Th17/metabolismo
14.
Neuron ; 107(2): 234-256, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32553197

RESUMO

Depression represents the number one cause of disability worldwide and is often fatal. Inflammatory processes have been implicated in the pathophysiology of depression. It is now well established that dysregulation of both the innate and adaptive immune systems occur in depressed patients and hinder favorable prognosis, including antidepressant responses. In this review, we describe how the immune system regulates mood and the potential causes of the dysregulated inflammatory responses in depressed patients. However, the proportion of never-treated major depressive disorder (MDD) patients who exhibit inflammation remains to be clarified, as the heterogeneity in inflammation findings may stem in part from examining MDD patients with varied interventions. Inflammation is likely a critical disease modifier, promoting susceptibility to depression. Controlling inflammation might provide an overall therapeutic benefit, regardless of whether it is secondary to early life trauma, a more acute stress response, microbiome alterations, a genetic diathesis, or a combination of these and other factors.


Assuntos
Depressão/fisiopatologia , Inflamação/fisiopatologia , Afeto , Antidepressivos/uso terapêutico , Depressão/imunologia , Depressão/psicologia , Transtorno Depressivo Maior/imunologia , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/psicologia , Humanos , Sistema Imunitário/fisiopatologia , Inflamação/imunologia , Inflamação/psicologia
15.
Brain Behav Immun ; 89: 51-58, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32479995

RESUMO

Major depression is a prevalent, debilitating disease, yet therapeutic interventions for depression are frequently inadequate. Many clinical and pre-clinical studies have demonstrated that depression is associated with aberrant activation of the inflammatory system, raising the possibility that reducing inflammation may provide antidepressant effects. Using the learned helplessness mouse model, we tested if susceptibility or recovery were affected by deficiency in either of two receptors that initiate inflammatory signaling, Toll-like receptor-4 (TLR4) and TLR2, using knockout male mice. TLR4-/- mice displayed a strong resistance to learned helplessness, confirming that blocking inflammatory signaling through TLR4 provides robust protection against this depression-like behavior. Surprisingly, TLR2-/- mice displayed increased susceptibility to learned helplessness, indicating that TLR2-mediated signaling counteracts susceptibility. TLR2-mediated signaling also promotes recovery, as TLR2-/- mice demonstrated a severe impairment in recovery from learned helplessness. That TLR2 actually protects from learned helplessness was further verified by the finding that administration of the TLR2 agonist Pam3CSK4 reduced susceptibility to learned helplessness. Treatment with Pam3CSK4 also reversed chronic restraint stress-induced impaired sociability and impaired learning in the novel object recognition paradigm, demonstrating that TLR2 stimulation can protect from multiple impairments caused by stress. In summary, these results demonstrate that TLR2-mediated signaling provides a counter-signal to oppose deleterious effects of stress that may be related to depression, and indicate that TLR2 and TLR4 act oppositely to balance mood-relevant responses to stress.


Assuntos
Depressão , Receptor 2 Toll-Like , Animais , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Receptor 2 Toll-Like/genética
16.
Immunology ; 160(4): 357-365, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32277469

RESUMO

T helper type 17 (Th17) cells are recognized as important contributors to the deleterious effects of several neurological and psychiatric diseases. Clarifying mechanisms that control the production of Th17 cells may therefore provide new strategies for developing novel interventions in a broad spectrum of disorders. Th17 cell differentiation is promoted by glycogen synthase kinase-3 (GSK3), but the mechanisms for this are only beginning to be understood. Using T-cell-selective depletion of GSK3ß and multiple selective pharmacological GSK3 inhibitors, we found that GSK3 inhibition decreased C-C motif chemokine (ccl)20, C-C motif chemokine receptor (ccr)6, interleukin (IL)-9, Runt-related transcription factor (Runx)1, interferon regulatory factor (Irf)4 and c-maf mRNA expression after 2 days of Th17 cell differentiation in vitro. These effects were found to be independent of the master regulator transcription factor retinoic acid receptor-related orphan receptor γT (RORγT), as GSK3 inhibition still reduced Th17 cell differentiation in RORγT-depleted cells. Because IL-9 was approximately ninefold down-regulated in GSK3ß-/- CD4 cells, we tested if reintroduction of IL-9 during Th17 cell differentiation abolished the inhibition by GSK3 deficiency of Th17 cell differentiation. We found that IL-9 over-expression was sufficient to reverse the inhibition of Th17 cell differentiation by GSK3 inhibition or depletion. We found that IL-9 enhances Th17 cell differentiation in part through signal transducer and activator of transcription 3 (STAT3) activation, and IL-9 also enhances STAT3 binding to the IL-17a promoter. Altogether, these findings suggest that IL-9 might be an important mediator of GSK3ß-dependent enhancement of Th17 cell differentiation.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Interleucina-9/metabolismo , Células Th17/imunologia , Animais , Diferenciação Celular , Células Cultivadas , Subunidades alfa de Fatores de Ligação ao Core/genética , Quinase 3 da Glicogênio Sintase/genética , Interleucina-17/genética , Ativação Linfocitária , Depleção Linfocítica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Fator de Transcrição STAT3/genética
17.
Am J Psychiatry ; 177(1): 58-65, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31352811

RESUMO

OBJECTIVE: Although several reports have documented heightened systemic inflammation in posttraumatic stress disorder (PTSD), few studies have assessed whether inflammatory markers serve as prospective biomarkers for PTSD risk. The present study aimed to characterize whether peripheral immune factors measured in blood samples collected in an emergency department immediately after trauma exposure would predict later chronic development of PTSD. METHODS: Participants (N=505) were recruited from a hospital emergency department and underwent a 1.5-hour assessment. Blood samples were drawn, on average, about 3 hours after trauma exposure. Follow-up assessments were conducted 1, 3, 6, and 12 months after trauma exposure. Latent growth mixture modeling was used to identify classes of PTSD symptom trajectories. RESULTS: Three distinct classes of PTSD symptom trajectories were identified: chronic (N=28), resilient (N=160), and recovery (N=85). Multivariate analyses of covariance revealed a significant multivariate main effect of PTSD symptom trajectory class membership on proinflammatory cytokines. Univariate analyses showed a significant main effect of trajectory class membership on plasma concentrations of proinflammatory tumor necrosis factor α (TNFα) and interferon-γ (IFNγ). Concentrations of proinflammatory TNFα and IFNγ were significantly lower in individuals in the chronic PTSD class compared with those in the recovery and resilient classes. There were no significant differences in interleukin (IL) 1ß and IL-6 concentrations by PTSD symptom trajectory class. Anti-inflammatory and other cytokines, as well as chemokines and growth factor concentrations, were not associated with development of chronic PTSD. CONCLUSIONS: Overall, the study findings suggest that assessing the proinflammatory immune response to trauma exposure immediately after trauma exposure, in the emergency department, may help identify individuals most at risk for developing chronic PTSD in the aftermath of trauma.


Assuntos
Mediadores da Inflamação/sangue , Interferon gama/sangue , Transtornos de Estresse Pós-Traumáticos/sangue , Transtornos de Estresse Pós-Traumáticos/psicologia , Fator de Necrose Tumoral alfa/sangue , Ferimentos e Lesões/sangue , Ferimentos e Lesões/psicologia , Adolescente , Adulto , Idoso , Biomarcadores/sangue , Doença Crônica , Suscetibilidade a Doenças , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Risco , Fatores de Tempo , Adulto Jovem
18.
Front Neurosci ; 12: 547, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30174579

RESUMO

Major depressive disorder (MDD) is a prevalent and debilitating disorder, often fatal. Treatment options are few and often do not provide immediate relief to the patients. The increasing involvement of inflammation in the pathology of MDD has provided new potential therapeutic avenues. Cytokine levels are elevated in the blood and cerebrospinal fluid of MDD patients whereas immune cells often exhibit an immunosuppressed phenotype in MDD patients. Blocking cytokine actions in patients exhibiting MDD show some antidepressant efficacy. However, the role of cytokines, and the immune response in MDD patients remain to be determined. We reviewed here the roles of the innate and adaptive immune systems in MDD, as well as potential mechanisms whereby the immune response might be regulated in MDD.

19.
Neuron ; 99(5): 914-924.e3, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30146307

RESUMO

Inflammation has been involved in the pathophysiology and treatment response of major depressive disorder (MDD). Plasma cytokine profiles of 171 treatment-naive MDD patients (none of the MDD patients received an adequate trial of antidepressants or evidence-based psychotherapy) and 64 healthy controls (HCs) were obtained. MDD patients exhibited elevated concentrations of 18 anti- and proinflammatory markers and decreased concentrations of 6 cytokines. Increased inflammasome protein expression was observed in MDD patients, indicative of an activated inflammatory response. The plasma of MDD patients was immunosuppressive on healthy donor peripheral blood mononuclear cells, inducing reduced activation of monocytes/dendritic cells and B cells and reduced T cell memory. Comparison between 33 non-responders and 71 responders at baseline and 12 weeks revealed that after treatment, anti-inflammatory cytokine levels increase in both groups, whereas 5 proinflammatory cytokine levels were stabilized in responders, but continued to increase in non-responders. MDD patients exhibit remodeling of their inflammatory landscape.


Assuntos
Transtorno Depressivo Maior/sangue , Transtorno Depressivo Maior/diagnóstico , Mediadores da Inflamação/sangue , Transdução de Sinais/fisiologia , Adulto , Biomarcadores/sangue , Transtorno Depressivo Maior/terapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Distribuição Aleatória , Resultado do Tratamento
20.
Brain Behav Immun ; 73: 180-191, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29698707

RESUMO

Increasing evidence indicates that multiple actions of the immune system are closely intertwined with the development of depression and subsequent recovery processes. One of these interactions is substantial evidence that the TH17 subtype of CD4+ T cells promotes susceptibility to depression-like behaviors in mice. Comparing subtypes of CD4+ T cells, we found that administration of TH17 cells, but not TH1 cells or TREGS, promoted susceptibility to learned-helplessness depressive-like behavior and accumulated in the hippocampus of learned helpless mice. Adoptively transferred TH17 cells into Rag2-/- mice that are devoid of endogenous T cells increased susceptibility to learned helplessness, demonstrating that increased peripheral TH17 cells are capable of modulating depression-like behavior. Moreover, in wild-type mice, adoptively transferred TH17 cells accumulated in the hippocampus of learned-helpless mice and induced endogenous TH17 cell differentiation. Hippocampal TH17 cells from learned-helpless mice expressed markers of pathogenic TH17 cells (CCR6, IL-23R) and of follicular cells (CXCR5, PD-1), indicating that the hippocampal cells are TFH-17-like cells. Knockout of CCR6 blocked TH17 cells from promoting learned helplessness, which was associated with increased expression of PD-1 in CCR6-deficient TH17 cells. In summary, these results reinforce the conclusion that depression-like behaviors are selectively facilitated by TH17 cells, and revealed that these cells in the hippocampus of learned helpless mice display characteristics of TFH17-like cells, which may contribute to their pathogenic actions in promoting depression.


Assuntos
Depressão , Células Th17 , Animais , Desamparo Aprendido , Hipocampo , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...